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Abstract  

The general relativity concept of density-dependent space-curvature and the mass-energy 
relation of special relativity indicate a rest-mass quantisation rule which makes it possible 
to account for the interconversion of mass and energy in a simple manner and obtain the 
known quantum postulates as corollaries, thereby throwing new light on the nature of 
matter and radiation, the uncertainty principle, and the structure of elementary particles. 

1. Introduction 

In a recent paper (Chacko, 1974) I reported some simple relations between 
the masses of  the known elementary particles, obtained on the basis of  a rest- 
rhass quantisation rule, and suggested a general equation which indicates the 
possibility for the existence of  hitherto unidentified particles. In this paper I 
will a t tempt  to find a basis for the rest-mass quantisation rule in the density- 
dependent  space-curvature of  general relativity and the mass-energy relation 
of  special relativity and to obtain the other quantum postulates and the un- 
certainty principle as corollaries. The structure of  elementary particles and 
that of  space-time in general will be dealt with in subsequent papers. 

The solution of  the relativistic wave equation for the motion of  an electron 
yields -+ speed o f  light as eigenvalues for the instantaneous velocity of  the 
electron (Dirac, 1958). This result, which is inevitable for all particles with 
mass, whether charged or neutral, has never been satisfactorily explained 
(Feynman,  1962). By choosing a general relativity model for the particle, I 
propose to show that  this intrinsic mot ion with the speed of light can account 
for the rest-energy of  the particle if  its rest-mass is quantised so that the rest- 
energy multiplied by the period of  mot ion  with the speed of  light in a closed 
cyclical path is a constant and that this quantisation also accounts for the 
inherent uncertainty in physical measurements,  which makes it impossible to 
detect this intrinsic motion with the speed of  light, if, for the basic particles, 
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of which all other elementary particles are combinations, the constant is half 
the Planck's constant of  action. 

2. A Model from General Relativity 

Using relativistic units of  mass, length and time (Tolman, 1934a), we take 
as a model for particle, a space-time four-volume 

S = §Tr2R3Rt (2 . t )  

which may be considered as the four-surface of  a five-sphere if R = R t, as in 
the de Sitter model, or the four-volume of  a hyper-torus i f R t  > R; R being 
the radius of  spatial curvature and 2rrRt the time taken to travel with the 
speed of  light (c = 1) in a closed circular path of  radius Rt.  Assuming spatial 
spherical symmetry consider the model to be filled with a 'perfect fluid' of  
constant density Poo. Schwarzshild's interior solution (Tolman, 1934b) gives 

3 
Poo - 87rR 2 (2.2) 

Multiplying the space-time four-volume by this density, the action content of  
the model is obtained as 

A = Spoo = 7rRRt (2.3) 

Taking the volume of the spatial section as 

V = -~TrR 3 (2.4) 

the rest-mass of  the model is obtained as 

mo= VPoo = ½R (2.5) 

Substituting for R from (2.3), 

A 
mo = (2.6) 

27rR t 

Converting to c.g.s, units 

o r  

moc2 = A 
27rRt/c 

A 
moc 2 (Rt/c) = 2--~ (2.7) 

where R t now has dimensions of  length, so that 2rrRt/c gives the time for 
travelling along a closed circular path of  radius R t with the speed of  light c, 
and may be considered as a period associated with.the particle. 

It  is to be noted that the model is chosen to represent mass only. Properties 
like spin, magnetic moment ,  mean life etc., will not be considered in the 
present treatment.  
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3. R es t - E ner gy  and  Res t -Mass  Quan t i za t i on  

We assign an intrinsic periodic motion in a circular path to the model particle 
when it is at rest in the classical sense-i .e. ,  its experimentally determinable 
velocity, which is the average rate of  change in the mean position in the labora- 
tory frame of reference, taken over a period of time extending over several 
periods of  the intrinsic motion,  is z e ro -and  show that the energy associated 
with this intrinsic periodic motion can account for the rest-energy of  the 
particle if the instantaneous velocity of  the periodic motion is of  constant 
magnitude equal to the speed of light and the rest-mass of  the particle is 
quantised so that the rest-energy multiplied by the period of  motion is a con- 
stant. Since the particle is at rest in the classical sense we call the kinetic and 
potential energies associated with the periodic motion as 'rest-kinetic energy' 
and 'rest-potential energy' respectively and equate the sum of  these energies 
to the rest-energy of the particle given by the mass-energy relation of special 
relativity. 

Let u be the constant magnitude of  the instantaneous velocity of  the 
periodic motion in a circular path of  radius r. 

In equation (2.7), u = e and r = R t. So the rest-kinetic energy of the model 
particle is given by 

T = ½too c2 (3.1) 

and the rest-potential energy by 
Rr 

f V = m o - -  dr  (3.2) 
r 

o 

Equating the sum E = T + V to the rest-energy of the particle we get 

Rt 

f u2 ½moc 2 + rno - -  d r  = m o  cz (3.3) 
r 

o 

It  is to be emphasised here that u is the velocity of  an intrinsic periodic 
motion associated with the model particle which is at rest in the classical 
sense, its mean position remaining fixed and measurable velocity zero, and 
that the mass does not change with u. Even when u has the magnitude of  the 
velocity of  light, the mass remains the same as the rest mass m o since the 
measurable velocity of  the particle is zero (v = 0). Hence the validity of  
equations (3.1) and (3.2). 

So from (3.3) we get that 

Rt 

f u2 m o - -  d r  = ½rno c2 (3.4) 
r 

o 
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U C 
. . . .  K (3 .5)  
r Rt 

where K is a constant for the particle, so that 

R t R t  

f uZ ( 1 ..2n2_ 1 2 m o --dr= rnoKZrdr=grno ~ ~t-~rnoc 
J f 

0 0 

We get from (2.7) and (3.5) that 

C /7/0 C2 
K . . . .  (3.6) 

Rt A/2~T 

Since K is a constant for the particle, A and Rt must be constants. 
Thus it is possible to account for the rest-energy of the particle in terms of 

the intrinsic periodic motion if, and only if, A is a constant and u = c. Since 
Rt is the radius of the circular path corresponding to the speed c in (2.7), it is 
a parameter, characteristic of the particle and c/27rR t gives the frequency 
associated with the particle when it is at rest. From (2.7) we see that this 
frequency multiplied by the constant A gives the rest-energy of the particle. 
So to solve the problem of the masses of elementary" particles the constants 
A and Rt are to be evaluated. 

Experimental data indicate that A is an integral or half-integral multiple of 
the Planck's constant of action h or combinations of these multiples, the 
multiplication factors being the so-called quantum numbers. It is possible to 
obtain semi-phenomenotogical relations between the masses of  elementary 
particles in terms of these quantum numbers, based on the known interactions 
of these particles. Some of these results have been reported in Chacko (1974). 
A full theoretical treatment may have to await further developments from 
experimental investigations, though the already known symmetry laws and 
invariance principles may also guide in this direction. 

The value of Rt in the case of elementary particles is about t .2 x 10 -13 cm, 
as reported in Chacko (1974), and this is nearly a 2 times smaller than the 
Bobr radius of the hydrogen atom, a being the fine structure constant. In 
equation (2.7) a circular path is assumed for simplicity. Paths may be circular, 
elliptical, or some other closed figure for particles at rest in the classical 
sense. 

For the basic model we get, by giving A the value ½h in equation (2.7), 

moc2(Rt/c) =--h (3.7") 
4zr • 

The elementary particles can then be considered as combinations of  these 
basic particles. 
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4. Particles in Mot ion  

Particles in motion in the classical sense (v ~ 0) follow helical paths, the 
component of  the instantaneous velocity e parallel to the axis of  the helix 
giving the velocity of motion v. 

Consider a particle of rest mass m o moving in the classical sense with 
a velocity v. If one turn of the helical path has a length X, equation (2.7) 

mo c2 (X/c) = A (4.1) 

becomes 

O r  

A 

moc 

For a circular helix of radius r 

giving 

27rr 

~k - _ V 2 ~ 1 / 2  

1 7] 

1/2 

(4.2) 

(4.3) 

Combining (4.2) and (4.3) we get the inertial mass of the particle moving with 
velocity v as 

mo A 
m - ( v 2 ]1/2 = 27rrc 

l - j /  
(4.4) 

From the above equation Bohr's quantum condition for the electronic orbits 
can be obtained by putting 

C 
A = nh and r - -  = a (4.5) 

U 

giving 

nh 
may 2n (4.6) 

where a is the radius of the Bohr orbit. 
The electrons travel with the speed of light in helical paths which have the 

shape of a coiled coil, the Bohr orbits representing the axes of the helical 
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paths. Bohr orbits therefore give only the mean position of the electron at 
any given time, the velocity v being the average velocity of the electron around 
the nucleus. The instantaneous velocity is always c. 

This picture of the electronic energy levels of  the atom restores the vivid- 
ness which has been absent from models based on the current interpretation 
of quantum mechanics, and shows how the electrons move with a velocity of  
constant magnitude c as required by the solution of the relativistic wave 
equation and at the same time conform to the statistical predictions of the 
theory. The details will be discussed in a subsequent paper. 

5. The Principle o f  Indeterminacy 

The inherent uncertainty in physical measurements is evident from (3.7). 
The smallest probe available for making physical measurements is the action 
unit obtained by putting A = h/2 in (2.7). So any measurement will cause a 
disturbance which cannot be less than this action unit which is given by 

mo c2 x 27rRt/c = ½h (5.1) 

We have no means of knowing whether this is added to or removed from 
the system by the process of measurement. So the uncertainty is at least 
double the smallest action unit. Hence the uncertainty principle is given by 

AE At => •z (5.2) 

where 
h 

AE = mo c2, At =Rt /c  and h 27r 

This again explains why the periodic motion with the velocity of light in 
the case of material particles remains concealed. I f  the basic components of  
all particles conform to equation (5.1) so that 

h 
moc2 (R t/c) > -~ (5.3) 

it will be impossible to detect this motion. Only average velocities for several 
such periods of time can be measured by experimental techniques. 

6. Inter-conversion o f  Matter and Radiation 

Let a particle with rest mass mo moving in the classical sense with a velocity 
v combine with its anti-particle which also may be assumed to be moving with 
the same velocity v. 

Both obey equation (4.4) and we take the simplest case when A = ½h, so 
that 

h 
m = - -  (6.1) 

2re 
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The total energy of the two particles is given by 

E = 2 m c  2 (6.2) 

We wilt assume that there is no difference between a particle and its anti- 
particle except that their periodic circular motions are in the opposite sense, 
i.e. one is clockwise and the other anti-clockwise. These two circular motions 
combine to give a simple harmonic motion so that a photon is emitted with 
velocity c. 

The amplitude of  the S.H.M. is given by (6.1) as 

h 
a = r = - -  (6.3) 

2 m e  

The frequency is given by 

1 c c 2 m c  2rnc 2 
v = -- = ........... x - (6.4) 

T 21rr 27r h h 

We now calculate the energy of  the photon on the assumption that it con- 
sists of  two particles executing simple harmonic motion in the transverse 
direction while travelling forward with velocity c as in the classical theory. 
The total energy of  the photon is the sum of  the kinetic energy of  propagation 
and the energy of  S.H.M. 

Kinetic energy of  propagation for 
the two particles, each of  mass rn = 2 x ½mc 2 = m c  2 ( 6 5 )  

Here again it is to be noted that the mass m changes only with velocity v, as 
given in (4.4), and this change affects only the amplitude a in (6.3) and the 
frequency in (6.4). The mass actually does not change when the particle and 
anti-particle combine to form the photon state because the magnitude of  the 
velocity and hence the kinetic energy for the motion in the helical path in the 
particle state is the same as the velocity and kinetic energy for propagation 
in the photon state. Inertia vanishes because the circular motion changes to 
an S.H.M. 

Average kinetic energy of  - (2m)w2a2 - ½rnc 2 (6.6) 
S.H.M. for the two particles 4 

since a)a = a)r = c. 

Average potential energy of  = rr2(2rn)u2a 2 
S.H.M. for the two particles 

2 2rnc 2 z 

= ½rnc 2 (6.7) 

The total energy of S.H.M. = ½me 2 + ½me 2 = rnc ~ (6.8) 
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Adding (6.5) and (6.8), = me 2 + mc 2 = 2mc 2 (6.9) 
total energy of the photon 

Thus the energy of the photon emitted is the same as the combined energies 
of the particle and anti-particle given by (6.2). 

From (6.2), (6.9) and (6.4) we get that for the photon, the energy is given 
by 

E = h v  (6.10) 

which is the relation originally postulated by Planck. 
Here we have taken only the simplest case. In pair production and annihila- 

tion involving actual elementary particles like electrons and positrons, other 
properties like spin have to be considered in order to account for phenomena 
like two-photon and three-photon annihilations. 

7. Conclusion 

The principle of rest-mass quantisation obtained by assuming an intrinsic 
periodic motion with the speed of light to account for the rest-energy of 
particles with non-zero rest-mass, leads to a clearer picture of wave-particle 
duality and the mechanism of the inter-conversion of matter and radiation. 
The motion with the speed of light manifests as inertia in material particles 
and the rest-mass is quantised so that this periodic motion with the speed of 
light remains hidden in the inherent uncertainty of physical measurements. 
Only the component of this velocity parallel to the axis of the helical path 
changes due to the action of a force and there is a corresponding change in 
the radius of the path and hence in the inertial mass of the particle so that 
the instantaneous velocity always remains equal to the speed of light. 
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